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Non-linear electron dynamics in semiconductor quantum structures define a rich scientific arena 
with potential impact on novel devices in the terahertz regime. An important concept is photon 
assisted transport, marked by new transport channels, opened by the absorption or emission of 
one or more photons. Recent experiments carried out by us have exposed, in a graphic way, 
several phenomena related to photon assisted tunneling in multi-quantum well superlattices, 
antenna coupled to intense terahertz electric fields. 

• Photon assisted tunneling in double quantum well / triple barrier resonant tunneling 
diodes reveals multiple photon assisted tunneling, accompanied by both emission 
and absorption of up to three terahertz photons. 

• Multi-photon assisted sequential resonant tunneling is observed in superlattices 
driven by terahertz fields. Electric field domains are supported by these photon 
assisted channels. 

• Terahertz driven sequential resonant tunneling superlattices have exposed dynamic 
localization for the first time. Remarkably, dynamic localization is accompanied 
by absolute negative resistance. 

• Stimulated photon emission as well as absorption channels are recovered near zero 
bias. 

• Delineated the classical I quantum crossover frequency in these systems. 

• Multi-photon resonances with Block oscillation are observed in electrically biased 
miniband superlattices. 

Elements of the experimental approach that contributed to its success are the following: 

• Integration of micron size test structures into "bow tie" antennas. 
Antenna coupling enhanced the terahertz electric field impressed on the device and 

assured that the electric field inside the quantum well structure was reasonably uniform. 
Collaboration with graduate student researcher U. Bhattacharya and Dr. M. Rodwell in 
Electrical and Computer Engineering at UCSB is gratefully acknowledged. 

• "Tailor made" quantum well structures grown by MBE. 
Strong quantum confinement in vertical structures allows photon assisted processes 

to persist to 100' s K.  Collaboration with graduate student researchers Ken Campman, 



Kevin Maranowski, D. Leonard and G. Madeiros-Ribeiro and Dr. A.C. Gossard in the 
Materials Department at UCSB is gratefully acknowledged. 

•     Intense tunable radiation form the UCSB Free-electron Lasers. 
The UCSB FEL's provide kilowatts of tunable radiation from 120 GHz to 4.8 THz. 

Terahertz field strengths of the order of kilovolts/cm lift these test structures into the 
non-perturbative limit. 

Triple barrier I double quantum 
well resonant tunneling diodes. It has 
been difficult, if not impossible, to 
recover photon assisted tunneling 
features due to "quantum 
rectification" in a simple resonant 
tunneling diode. Empirically this is 
due to the fact that the resonant 
tunneling features are very broad even 
when the voltage is properly scaled to 
the photon energy. 2D - 2D tunneling 
is marked by relatively sharp features 
in the I-V. (Fig. 1.) Here, clear 
photon assisted tunneling in the 
quantum rectified response persists to 
temperatures above 200 K. 
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Fig. 1 2-D to 2-D tunneling in a double quantum well 
resonant tunneling diode displays sharp photon assisted 
features at terahertz frequencies. 
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Fig.   2      Current   voltage   characteristic 
without and with radiation at 3.42 THz . 

Multiphoton   sequential   resonant   tunneling. 
Sequential resonant tunneling is characterized by 
extremely non-linear current voltage characteristics. It 
is marked by major steps in current when the applied 
field uniformly aligns the superlattice such that the 
ground state in the "up hill" well is resonant with the 
excited state in the "down hill" well. Smaller features 
appear between these major steps that signal the 
motion of an electric field domain across the sample. 
(Fig. 2) In the presence of intense terahertz radiation, 
new steps appear that signal the appearance of photon 
assisted sequential resonant tunneling and electric 
field domains. 



For small DC voltages the current flows 
by means of ground state to ground state 
tunneling. There is a maximum current that 
can flow: above that, electric field domains 
form. The conductance at zero volts is 
suppressed by the terahertz field, a 
manifestation of dynamic localization. 
Remarkably, the conductance is driven 
through zero and absolute negative 
conductance appears. (Fig. 3) When the 
electrons in the superlattice are dynamically 
localized, they flow "up-hill". 

Accompanying the dynamic localization, 
multiphoton assisted tunneling by stimulated 
emission appears. These are "gain" channels 
for frequencies less than the Stark splitting. 
(Fig. 3) 
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Fig. 3 Current voltage characteristic of a 
superlattice exhibiting dynamic localization and 
absolute negative conductance. 
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Bloch Oscillation. By reducing the barrier thickness, the sequential resonant tunneling 
superlattice evolves into a miniband superlattice with coherent transport over several superlattice 
quantum wells, «10 in the case we explored, 
(2nm barriers of Al.3Ga.7As and 8 nm GaAs 
quantum wells). High electric field transport is 
now controlled by Bloch oscillation. When 
irradiated with terahertz radiation, sharp 
discontinuities appear in the current, at voltages 
that scale with the frequency. (Fig. 4) These 
appear to be single and multi-photon resonances 
with Bloch oscillation. This is an analog of 
Shapiro steps in irradiated superconductor 
junctions due to the AC Josephson effect. 
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All of these phenomena are semiconductor 
analogs of photon assisted processes that are 
normally only seen in superconducting junctions, 
such as, photon assisted quasi-particle tunneling 
and the AC Josephson effect. These 
experiments have opened the rich arena of 
superconducting electronics, to semiconductor 
electronics. 
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Fig. 4     Multi photon resonance with Bloch 
oscillation in a miniband superlattice. 

In keeping with the character of the terahertz regime, as a transition region between 
electronics and photonics, these phenomena are a mix of transport and quantum processes in 



terahertz fields.    This research has underscored the potential of semiconductor quantum 
structures to make possible terahertz electronics. 
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